21,821 research outputs found

    Rhode Island\u27s New Judicial Merit Selection Law

    Get PDF

    Cross-sectional and prospective associations between cognitive appraisals and posttraumatic stress disorder symptoms following stroke

    Get PDF
    This study examined cross-sectional and prospective associations between cognitive appraisals and posttraumatic stress disorder (PTSD) symptoms following stroke. While in hospital, stroke patients (n=81) completed questionnaires assessing cognitive appraisals (i.e., negative cognitions about the self, negative cognitions about the world, and self-blame) and PTSD symptoms. PTSD symptoms were assessed again 3 months later when all patients had been discharged from hospital (n=70). Significant correlations were found between the time 1 measures of negative cognitions about the self and the world, but not self-blame, and the severity of PTSD symptoms measured at time 1 and at time 2. Regression analyses revealed that cognitive appraisals explained a significant amount of variance in the severity of PTSD symptoms at time 1, with negative cognitions about the self-emerging as a significant predictor. In contrast, time 1 cognitive appraisals were unable to explain additional variance in time 2 PTSD severity over and above that explained by time 1 PTSD severity. The findings therefore provide only weak support for Ehlers and Clark's cognitive model of PTSD

    Low-Energy Heavy-Ion Reactions and the Skyrme Effective Interaction

    Get PDF
    The Skyrme effective interaction, with its multitude of parameterisations, along with its implemen- tation using the static and time-dependent density functional (TDHF) formalism have allowed for a range of microscopic calculations of low-energy heavy-ion collisions. These calculations allow variation of the effective interaction along with an interpretation of the results of this variation informed by a comparison to experimental data. Initial progress in implementing TDHF for heavy-ion collisions necessarily used many approximations in the geometry or the interaction. Over the last decade or so, the implementations have overcome all restrictions, and studies have begun to be made where details of the effective interaction are being probed. This review surveys these studies in low energy heavy-ion reactions, finding significant effects on observables from the form of the spin-orbit interaction, the use of the tensor force, and the inclusion of time-odd terms in the density functional.Comment: submitted to Prog. Part. Nucl. Phy

    Stability and response of polygenic traits to stabilizing selection and mutation

    Full text link
    When polygenic traits are under stabilizing selection, many different combinations of alleles allow close adaptation to the optimum. If alleles have equal effects, all combinations that result in the same deviation from the optimum are equivalent. Furthermore, the genetic variance that is maintained by mutation-selection balance is 2μ/S2 \mu/S per locus, where μ\mu is the mutation rate and SS the strength of stabilizing selection. In reality, alleles vary in their effects, making the fitness landscape asymmetric, and complicating analysis of the equilibria. We show that that the resulting genetic variance depends on the fraction of alleles near fixation, which contribute by 2μ/S2 \mu/S, and on the total mutational effects of alleles that are at intermediate frequency. The interplay between stabilizing selection and mutation leads to a sharp transition: alleles with effects smaller than a threshold value of 2μ/S2\sqrt{\mu / S} remain polymorphic, whereas those with larger effects are fixed. The genetic load in equilibrium is less than for traits of equal effects, and the fitness equilibria are more similar. We find that if the optimum is displaced, alleles with effects close to the threshold value sweep first, and their rate of increase is bounded by μS\sqrt{\mu S}. Long term response leads in general to well-adapted traits, unlike the case of equal effects that often end up at a sub-optimal fitness peak. However, the particular peaks to which the populations converge are extremely sensitive to the initial states, and to the speed of the shift of the optimum trait value.Comment: Accepted in Genetic

    Fluctuations of the Casimir-Polder force between an atom and a conducting wall

    Full text link
    We consider the quantum fluctuations of the Casimir-Polder force between a neutral atom and a perfectly conducting wall in the ground state of the system. In order to obtain the atom-wall force fluctuation we first define an operator directly associated to the force experienced by the atom considered as a polarizable body in an electromagnetic field, and we use a time-averaged force operator in order to avoid ultraviolet divergences appearing in the fluctuation of the force. This time-averaged force operator takes into account that any measurement involves a finite time. We also calculate the Casimir-Polder force fluctuation for an atom between two conducting walls. Experimental observability of these Casimir-Polder force fluctuations is also discussed, as well as the dependence of the relative force fluctuation on the duration of the measurement.Comment: 6 page
    • …
    corecore